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Decades of behavioral studies have confirmed that extinction does not erase classically conditioned fear memories. For this reason,
research efforts have focused on the mechanisms underlying the development of extinction-induced inhibition within fear circuits.
However, recent studies in rodents have uncovered mechanisms that stabilize and destabilize fear memories, opening the possibility that
extinction might be used to erase fear memories. This symposium focuses on several of these new developments, which involve the timing
of extinction training. Extinction-induced erasure of fear occurs in very young rats, but is lost with the development of perineuronal nets
in the amygdala that render fear memories impervious to extinction. Moreover, extinction administered during the reconsolidation
phase, when fear memory is destabilized, updates the fear association as safe, thereby preventing the return of fear, in both rats and
humans. The use of modified extinction protocols to eliminate fear memories complements existing pharmacological strategies for
strengthening extinction.

Introduction
The last decade has witnessed a resurgence of interest in the neu-
ral mechanisms of Pavlovian extinction, especially related to fear
conditioning. In extinction, a tone conditioned stimulus (CS)
that predicts a shock unconditioned stimulus (US) is repeatedly
presented in the absence of the US, causing conditioned fear
responses to diminish. With sufficient extinction, subjects (rats
or people) respond to the CS as if they had never been condi-
tioned. However, decades of psychological studies have shown
that extinguished fear responses return with the passage of time,
when the CS is presented in a different context, or following an
aversive event (Pavlov, 1927; Rescorla and Heth, 1975; Bouton
and Bolles, 1979). The return of fear after extinction is behavioral
evidence that extinction does not erase fear memories, but in-
stead generates an inhibitory memory capable of temporarily
suppressing the expression of fear associations. Indeed, an in-
creasing number of studies are characterizing the neural
mechanisms of this inhibition, focusing on the amygdala, pre-
frontal cortex, and hippocampus (for review, see Myers and
Davis, 2007; Quirk and Mueller, 2008; Pape and Paré, 2010;
Radulovic and Tronson, 2010; Herry et al., 2010). From a
clinical perspective, the return of fear after extinction is
thought to contribute to relapse following exposure-based
therapies for anxiety disorders (Bruce et al., 2005). Thus, there
is a need for new behavioral methods capable of modifying the
original fear memory.

In recent years, the idea that extinction does not involve era-
sure has been challenged. Increasing evidence indicates that ex-
tinction reverses some of the conditioning-induced processes
within the amygdala. For example, extinction activates phospha-
tases that dephosphorylate CREB and other targets of conditioning
(Lin et al., 2003b). Consistent with a reversal of conditioning-
induced changes, extinction training causes depotentiation of CS
inputs to the amygdala and induces AMPA receptor endocytosis
(Lin et al., 2003a; Kim et al., 2007). These findings suggest that
extinction may erase some aspects of fear memory within the
amygdala, even though fear can still return at the behavioral level.
Moreover, in the past year, we have learned that simple modifica-
tions of the extinction protocol allow extinction to reduce fear in
such a way that it does not return, consistent with a brain-wide
modification of the original fear memory. This symposium describes
these recent approaches in rodent and humans, which involve alter-
ations in the timing of extinction trials, both within a session and
across the lifespan of the animal. In addition to revealing new ways to
regulate fear, these findings could dramatically improve the effec-
tiveness of extinction-based methods to treat anxiety.

The ontogeny of extinction: from erasure to inhibition
It is becoming clear that fundamentally different circuits mediate
extinction of learned fear at different stages of development. In
rats, extinction at the postweaning stage [e.g., 24 d of age (P24)]
has the same characteristics as documented in adult rats, namely,
it is dependent on the medial prefrontal cortex (mPFC) and re-
quires NMDA receptor activation (Kim and Richardson, 2010b).
Fear extinction in the preweaning stage of rats [e.g., a rat 17 d of
age (P17)], however, is quite different. For example, mPFC plays
no role in fear extinction at that age. Using auditory fear condi-
tioning to a white noise CS, Kim et al. (2009) showed that tem-
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porary inactivation of the mPFC during extinction training at
P24 markedly impaired retention of extinction, whereas tempo-
rary inactivation of the mPFC at P17 had no effect. Furthermore,
P24 rats exhibited increased neuronal activity in the mPFC fol-
lowing extinction, but P17 rats did not. Other studies from this
same group have shown that neither NMDA receptors nor GABA
receptors are necessary for extinction of learned fear in the P17
rat (for review, see Kim and Richardson, 2010b). Thus, the well
established NMDA-dependent plasticity in inhibitory circuits
within the prefrontal cortex and amygdala does not appear to
subserve extinction in very young rats.

Moreover, it appears that preweaning extinction erases fear
memories, whereas postweaning extinction does not. Rats extin-
guished at P17 do not exhibit a return of fear when tested in a
context different from that in which extinction training occurred
(i.e., renewal) or following a pretest stressor (i.e., reinstatement).
In contrast, rats extinguished at 24 d of age exhibit a return of fear
in both of these situations (Kim and Richardson, 2010b). This
reduced susceptibility to relapse appears to be determined by the
rat’s age at the time of extinction training rather than their age at the
time of conditioning (Yap and Richardson, 2007). This same pattern
of results is observed in regard to the involvement of the NMDA
receptor in extinction of learned fear. That is, the NMDA receptor
antagonist MK-801 impairs extinction retention if extinction train-
ing occurs on P24 but not if it occurs on P17, even when the age at
training and testing is held constant across groups (Kim and Rich-
ardson, 2010a). The adaptive function of the resistance of postwean-
ing fear memories to extinction remains speculative. One possibility
is that dangers likely to be encountered postweaning, when rats are
exploring their environment and searching for food, are more im-
portant to retain from a survival standpoint.

The role of perineuronal nets in the ontogeny of extinction
What mechanisms might explain the developmental regulation
of extinction? Clues may be gleaned from studies of sensorimotor
systems, where the development of inhibitory circuits marks the
opening and closing of critical periods for structural and func-
tional plasticity (Berardi et al., 1999; Hensch, 2005). During the
early critical period for plasticity in the visual cortex, monocular
deprivation shifts ocular dominance to the nondeprived eye, a
phenomenon not observed when light deprivation is performed
after the critical period. A similar critical period exists for post-
natal maturation of perineuronal nets (PNNs), which are a highly
organized form of chondroitin sulfate proteoglycan-containing
extracellular matrices that surround inhibitory interneurons
(Berardi et al., 2003; Hensch, 2005). In the visual cortex, the
development of PNNs coincides with the end of the critical
period for ocular dominance plasticity (Berardi et al., 2003;
Hensch, 2005). A similar phenomenon has recently been de-
scribed for experience-dependent plasticity in the murine bar-
rel cortex, as well as for song learning plasticity in the zebra
finch sensorimotor system (Balmer et al., 2009; Nowicka et al.,
2009). Together, these data suggest that the absence of PNNs
early in life might constitute a conserved mechanism allowing
for developmental plasticity.

The amygdala also contains PNNs, and it was recently sug-
gested that they serve the same role as in sensorimotor systems in
the developmental regulation of fear extinction (Gogolla et al.,
2009). Maturation of PNNs in the mouse amygdala coincides
with the end of the developmental period during which extinc-
tion induces erasure of fear memories, suggesting that PNNs
prevent extinction from erasing fear. Consistent with this, phar-
macological degradation of PNNs in the amygdala of adult mice

enabled extinction to erase conditioned fear without interfering
with fear consolidation, reconsolidation, or expression. This ef-
fect was specific for fear memories acquired in the absence of
PNNs; eliminating PNNs in adult rats that acquired fear with
PNNs intact had no effect on extinction. This suggests that ac-
quiring fear memories in the presence of PNNs protects condi-
tioned fear memories from extinction-induced erasure, allowing
extinction memories to coexist with previously acquired fear
memories (Gogolla et al., 2009).

Although the underlying mechanisms are still unclear, one
possible explanation for the protective action of PNNs on fear
memories is changes in local GABAergic inhibition. Indeed,
PNNs form primarily around parvalbumin-positive GABAergic
interneurons, and GABAergic inhibition regulates various forms
of plasticity in the amygdala (Bissière et al., 2003; Shaban et al.,
2006). Thus, formation of PNNs may alter the function of local
inhibitory circuits to promote the formation of an erasure-
resistant memory trace during fear conditioning. Because recov-
ery of conditioned fear responses is believed to contribute to the
relapse of pathological fear in anxiety disorders (Bruce et al.,
2005), these findings point to novel strategies for preventing
the development of extinction-resistant pathological fear and
anxiety.

Extinguishing fear during windows of fear consolidation
or reconsolidation
Extinction in young animals appears to erase fear memories, but
are there circumstances in which this occurs in adults? Recent
findings suggest so: extinction may reverse or update prior learn-
ing if it occurs within a discrete time window following reactiva-
tion (or retrieval), when fear memories are unstable, malleable,
or otherwise susceptible to disruption. During initial encoding of
events, memories are labile, but subsequently consolidate into
long-term storage through protein synthesis-dependent mecha-
nisms. Upon retrieval, a previously consolidated memory trace
becomes labile anew, and must undergo a second round of
protein synthesis to be restored (a phenomenon known as
reconsolidation) (Misanin et al., 1968; Nader and Einarsson,
2010). Thus, in adulthood, there are two discrete periods in
which memories may be updated or erased: during consolida-
tion and reconsolidation.

In the case of consolidation, updating of the fear memory can
take place when extinction training is given shortly after acquisi-
tion—a procedure called immediate extinction. First discovered
by Myers et al. (2006), extinction training applied immediately
after fear conditioning was shown to prevent the consolidation of
the fear memory, thereby preventing the return of fear. Subse-
quent experiments using variations of this protocol have met
with limited success (Maren and Chang, 2006; Norrholm et al.,
2008; Schiller et al., 2008; Woods and Bouton, 2008), suggesting
the involvement of other, as yet unknown, variables. Also, from a
translational perspective, it may be difficult to initiate extinction-
based therapies within the brief post-trauma time window indi-
cated by the rodent studies (10 – 60 min after conditioning).

In the case of reconsolidation, Monfils et al. (2009) offered
evidence that this window may allow updating of fear memories
by extinction. Using a fear conditioning paradigm in rats, these
authors showed that reactivating the fear memory with a single
isolated CS shortly before extinction training resulted in an ap-
parent reevaluation of the CS as nonthreatening. Indeed, rats
extinguished shortly after reactivation did not show spontaneous
recovery, renewal, or reinstatement of fear (Monfils et al., 2009).
Thus, simply manipulating the timing of the first nonreinforced
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CS yielded an effect resembling unlearning, as opposed to inhi-
bition of fear. This effect can be viewed as a reconsolidation-
updating mechanism, because it occurs only when extinction
training is given during the reconsolidation window (within 6 h
after memory reactivation in rats) (Nader et al., 2000).

The modification of the original fear memory with reconsolidation-
based extinction may have advantages over pharmacological ap-
proaches to facilitating extinction. Rodent studies have firmly
established that the partial NMDA agonist D-cycloserine (DCS)
facilitates extinction learning (Walker et al., 2002; Richardson et
al., 2004; Ledgerwood et al., 2005), but the extinguished fear can
still be renewed with a change of context (Woods and Bouton,
2006). Thus, it seems that the reduction of fear following
reconsolidation-based extinction is due to a reversal (or updat-
ing) of the fear memory, and not because the extinction itself is
rendered more efficacious. Understanding the factors that permit
memory updating within consolidation and reconsolidation
windows should enhance our ability to successfully target patho-
logical memories in a clinical context.

Translating rodent studies of reconsolidation and extinction
to humans
Although much evidence indicates that fear memory recon-
solidation can be blocked in various species (Nader and Ein-
arsson, 2010), it has been difficult to test this in humans.
Indeed, only two studies recently demonstrated encouraging
support for reconsolidation of emotional memories in post-
traumatic stress disorder (PTSD) patients (Brunet et al., 2008)
and in healthy volunteers that underwent fear conditioning
(Kindt et al., 2009). One of the major reasons for the slow pace
of human reconsolidation research is that most compounds
used to block reconsolidation in animals, such as protein syn-
thesis inhibitors (e.g., anisomycin), are toxic in humans.
Moreover, different physiological measures of fear in humans
(e.g., fear potentiated startle vs skin conductance response)
(Soeter and Kindt, 2010) could be differently affected by phar-
macological agents.

These difficulties underscore the
need for nonpharmacological methods
to block reconsolidation in humans. The
idea that drugs might be replaced with ex-
tinction training grew out of the view of
reconsolidation as an update mechanism
(Dudai, 2006), in which the information
available at the time of retrieval should
theoretically be incorporated into the re-
trieved memory while it is undergoing re-
consolidation. In this way, the memory
would no longer exist in its original form.
The notion of reconsolidation as an up-
dating mechanism has received support
from human studies targeting motor and
declarative memories (Walker et al., 2003;
Forcato et al., 2007; Hupbach et al., 2007).
Given the encouraging results with fear
memory in rodents (Monfils et al., 2009),
Schiller et al. (2010) attempted to trans-
late the combined reconsolidation/ex-
tinction technique to healthy humans
undergoing fear conditioning. They were
able to replicate the basic finding that ex-
tinction training performed during the
reconsolidation window (10 min after re-

activation) reduced fear in such a way that it did not show spon-
taneous recovery nor did it return following a reinstating shock.
They further showed that this effect was specific to the reacti-
vated memory, and did not occur with other (non-reactivated)
fear memories. Underscoring the potential clinical significance of
the finding, the reduction in fear obtained with the reconsolida-
tion/extinction technique lasted at least one year. These results
are encouraging from a clinical standpoint; however, it re-
mains unclear whether the reconsolidation/extinction tech-
nique can alter traumatic memories in patients suffering from
anxiety disorders.

Improving the effectiveness of extinction-based therapies for
anxiety disorders
Recent developments in extinction and reconsolidation research
have begun to blur the boundaries between basic and clinical
research (Fig. 1). The growing use of DCS as a pharmacological
adjunct to facilitate extinction was derived from early rodent
studies (Falls et al., 1992; Walker et al., 2002), but has now shown
promise in clinical studies for PTSD, obsessive-compulsive disorder,
phobia, and social anxiety disorder (for review, see Ganasen et al.,
2010). By strengthening extinction, pharmacological adjuncts can
reduce the return of fear, as well as reduce the number of therapy
sessions required to achieve a therapeutic effect. Other compounds
may be useful for strengthening or accelerating extinction, as sug-
gested by recent rodent studies. These include fibroblast growth
factor, methylene blue, endocannabinoids, and yohimbine
(Gonzalez-Lima and Bruchey, 2004; Morris and Bouton, 2007;
Chhatwal et al., 2009; Graham and Richardson, 2010). New stud-
ies elucidating the mechanism of extinction-induced inhibition
within the amygdala (Ehrlich et al., 2009; Amano et al., 2010;
Pape and Paré, 2010) will likely lead to additional pharmacological
targets. In fact, a recent study suggests that extinction may even be
induced by purely pharmacological means (Peters et al., 2010).

The discovery that extinction in juveniles erases early fears
could be exploited for treatment of childhood traumas. Indeed,
extinction-based therapies have been successful with children as

Figure 1. Schemas showing how different extinction procedures might interact with fear memory. A, Under standard condi-
tions, extinction erases fear in very young rats (�24 d of age). Above this age, extinction leaves the fear memory intact but inhibits
its expression. The transition corresponds to the development of PNNs in the amygdala. B, Extinction with pharmacological
(pharm.) adjuncts such as D-cycloserine strengthens extinction, but still leaves fear memories intact. C, Administering extinction
shortly after a reactivation of the fear memory, during its reconsolidation (reconsol.) window, erases the original fear memory,
converting it to a safety memory. Blue shading represents the strength of the fear memory.
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young as 7 years of age (Ollendick et al., 2009). It is now becoming
clear that fear conditioning in very young rodents can lead to
paradoxical approach behaviors to the CS, which are regulated by
stress hormones (Moriceau et al., 2006). Together with the find-
ings on PNNs, this suggests that the developmental switches that
regulate the stability and aversiveness of fear memories might be
manipulated for clinical gains. The new approaches targeting a
specific time window for extinction, when fear memories are
unstable, represent a critical advance in the field that should be
further explored. Most needed are parametric studies to deter-
mine the optimal time window to permanently erase fear, espe-
cially in anxiety disorder patients. Future therapies could feature
relatively simple modifications to the timing of exposure ses-
sions, and/or the use of pharmacological adjuncts given after the
session to facilitate consolidation of safety learning.

Potential applications beyond anxiety disorders
Deficits in extinction circuits are also apparent in neuropsychiat-
ric conditions other than anxiety disorders (Milad and Rauch,
2007). For example, extinction appears to be deficient in drug
addiction (Conklin and Tiffany, 2002; Havermans and Jansen,
2003), and common neural circuits exists for extinction of fear
and drug memories (Peters et al., 2009; Myers and Carlezon,
2010). Thus, extinction–reconsolidation manipulations can be
potentially applied as a strategy to augment extinction retention
in drug addiction and to restore control over drug cravings. Im-
pairments in extinction have also been reported in a subset of
schizophrenia patients who showed a general inability to retrieve
safety signals (Holt et al., 2009). It is tempting to speculate that
reducing fear memories with a reconsolidation– extinction ap-
proach could ameliorate some of the high anxiety and emotional
dysregulation seen in schizophrenia.

Rodent models of stress-mediated depression demonstrate
that traumatic stressors impair fear extinction and produce sig-
nificant abnormalities in the morphology of mPFC and amygdala
neurons (Holmes and Wellman, 2009; Roozendaal et al., 2009).
Studies of major depression in humans observe abnormal
neuronal morphology (Hercher et al., 2009), deficient activity
(Koenigs and Grafman, 2009), and altered functional connec-
tivity of mPFC (Frodl et al., 2010) correlated with the patho-
physiology of depression and enhanced memory for negative
emotions seen in this disorder (Hamilton and Gotlib, 2008).
Although extinction has not been explicitly studied in depres-
sion (but see Jovanovic et al., 2010), these findings suggest that
further characterization of the efficacy, strength, and limita-
tions of novel extinction strategies could lead to new thera-
peutic approaches for the emotional processing deficits seen in
depression and other psychiatric disorders.
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